ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Jesse C. Holmes, Ayman I. Hawari, Michael L. Zerkle
Nuclear Science and Engineering | Volume 184 | Number 1 | September 2016 | Pages 84-113
Technical Paper | doi.org/10.13182/NSE15-89
Articles are hosted by Taylor and Francis Online.
The S(α, β) double-differential thermal neutron scattering law tabulated in Evaluated Nuclear Data File (ENDF) File 7 is, by convention, produced theoretically through fundamental scattering physics models. Currently, no published ENDF evaluations contain covariance data for S(α, β) or associated scattering cross sections. Furthermore, no accepted methodology exists for quantifying or representing these covariances. Thermal scattering cross sections depend on the interatomic structure and dynamics of the material. For many solids, the influence of these properties on inelastic scattering cross sections can be adequately described through the phonon energy spectrum. The phonon spectrum can be viewed as a probability density function and is commonly the fundamental input for calculating S(α, β). Probable variation in the shape of the phonon spectrum may be established that characterizes uncertainties in the physics models and methodology employed in its production. Through Monte Carlo sampling of perturbations from the reference phonon spectrum, an S(α, β) covariance matrix may be generated. With appropriate sensitivity information, the S(α, β) covariance matrix can be propagated to generate covariance data for differential and integral cross sections. In this work, hexagonal graphite is used as an example material for demonstrating the proposed procedures for analyzing, calculating, and processing uncertainty information for theoretically generated thermal neutron inelastic scattering data.