ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
François Bachoc, Karim Ammar, Jean-Marc Martinez
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 387-406
Technical Paper | doi.org/10.13182/NSE15-108
Articles are hosted by Taylor and Francis Online.
It is now common practice in nuclear engineering to base extensive studies on numerical computer models. These studies require running computer codes in potentially thousands of numerical configurations and without expert individual controls on the computational and physical aspects of each simulation. In this paper, we compare different statistical metamodeling techniques and show how metamodels can help improve the global behavior of codes in these extensive studies. We consider the metamodeling of the Germinal thermomechanical code by Kriging, kernel regression, and neural networks. Kriging provides the most accurate predictions, while neural networks yield the fastest metamodel functions. All three metamodels can conveniently detect strong computation failures. However, it is more challenging to detect code instabilities, that is, groups of computations that are all valid but numerically inconsistent with one another. For code instability detection, we find that Kriging provides an interesting tool.