ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Harshavardhan Kadvekar, Sana Khan, Sangeetha Prasanna Ram, Jayalekshmi Nair, S. Ganesan
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 356-370
Technical Paper | doi.org/10.13182/NSE15-103
Articles are hosted by Taylor and Francis Online.
In a majority of the cases, error propagation studies in nuclear science and engineering use the sandwich formula, which is strictly applicable when the probability density function of the random input quantities (e.g., the basic cross-section data) are determined completely by the mean and covariances. The use of the sandwich formula, which is also referred to in the literature as traditional first-order sensitivity analysis or adjoint-based sensitivity and uncertainty analysis, requires the assumption of linearity assumption and relatively small errors. For the first time, this paper examines the application of unscented transformation (UT) technique, which is used in control and reliability engineering, to error propagation in the nuclear field for nonlinear cases. Using different examples, this paper shows that this deterministic method of UT produces better results compared to the conventional sandwich formula for error propagation. An example on error propagation given in the literature is revisited, and a calculation of the efficiency of a gamma-ray detector is also presented for illustrative purposes using the UT method.