ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Harshavardhan Kadvekar, Sana Khan, Sangeetha Prasanna Ram, Jayalekshmi Nair, S. Ganesan
Nuclear Science and Engineering | Volume 183 | Number 3 | July 2016 | Pages 356-370
Technical Paper | doi.org/10.13182/NSE15-103
Articles are hosted by Taylor and Francis Online.
In a majority of the cases, error propagation studies in nuclear science and engineering use the sandwich formula, which is strictly applicable when the probability density function of the random input quantities (e.g., the basic cross-section data) are determined completely by the mean and covariances. The use of the sandwich formula, which is also referred to in the literature as traditional first-order sensitivity analysis or adjoint-based sensitivity and uncertainty analysis, requires the assumption of linearity assumption and relatively small errors. For the first time, this paper examines the application of unscented transformation (UT) technique, which is used in control and reliability engineering, to error propagation in the nuclear field for nonlinear cases. Using different examples, this paper shows that this deterministic method of UT produces better results compared to the conventional sandwich formula for error propagation. An example on error propagation given in the literature is revisited, and a calculation of the efficiency of a gamma-ray detector is also presented for illustrative purposes using the UT method.