ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Xiafeng Zhou, Jiong Guo, Fu Li
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 185-195
Technical Paper | doi.org/10.13182/NSE15-95
Articles are hosted by Taylor and Francis Online.
The nodal integral method (NIM) has been widely used to solve multidimensional steady-state convection-diffusion problems. However, unphysical oscillating behavior arises when NIM is applied to steep-gradient problems and discontinuous problems. In this paper, a new nodal expansion method (NEM) with high-order moments (NEM_HM) is developed to reduce the numerical oscillation drawback of NIM. High-order moments of transverse-integrated variables are introduced. Based on the definition of Legendre moments, all the expansion coefficients of NEM_HM can be defined as shared moments and unshared moments. Then, the calculation framework of the traditional NEM is extended to include the high-order moments. Additional nodal balance equations are introduced to ensure the uniqueness of all the shared variables such as node-average variables. Finally, coupled discrete equations are obtained in terms of various order moments on the surfaces of the nodes. The classical Smith-Hutton problem and a cross-flow problem are chosen to test the effectiveness of NEM_HM. Numerical results show that the accuracy of NEM_HM outperforms NIM for steep-gradient problems and discontinuous cases.