ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
Hash Hashemian: Visionary leadership
As Dr. Hashem M. “Hash” Hashemian prepares to step into his term as President of the American Nuclear Society, he is clear that he wants to make the most of this unique moment.
A groundswell in public approval of nuclear is finding a home in growing governmental support that is backed by a tailwind of technological innovation. “Now is a good time to be in nuclear,” Hashemian said, as he explained the criticality of this moment and what he hoped to accomplish as president.
M. J. Fleming, L. W. G. Morgan, E. Shwageraus
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 173-184
Technical Paper | doi.org/10.13182/NSE15-55
Articles are hosted by Taylor and Francis Online.
Modeling of nuclide densities as a function of time within magnetic confinement fusion devices such as the JET, ITER, and proposed DEMO tokamaks is performed using Monte Carlo transport codes coupled with a Bateman equation solver. The generation of reaction rates occurs through either pointwise interpolation of energy-dependent tracked particle data with nuclear data or multigroup (MG) convolution of binned fluxes with binned cross sections. The MG approach benefits from decreased computational expense and data portability, but introduces errors through effects such as self-shielding. Depending on the MG structure and nuclear data used, this method can introduce unacceptable errors without warning. We present a MG optimization method that utilizes a modified particle swarm algorithm to generate seed solutions for a nonstochastic string-tightening algorithm. This procedure has been used with a semihomogenized one-dimensional DEMO-like reactor design to produce an optimized energy group structure for tritium breeding. In this example, the errors introduced by the Vitamin-J 175 MG are reduced by two orders of magnitude in the optimized group structure.