ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
YuGwon Jo, Bumhee Cho, Nam Zin Cho
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 229-246
Technical Paper | doi.org/10.13182/NSE15-100
Articles are hosted by Taylor and Francis Online.
The continuous-energy Monte Carlo (MC) method is gaining attention not only for nuclear reactor statics but also for transient analysis, as computing power increases with the use of massive parallel computers. This paper presents a practical and accurate MC transient analysis method for heterogeneous, continuous-energy reactor transient problems, based on the predictor-corrector quasi-static (PCQS) method. The transient fixed-source problem of the PCQS method is solved by MC calculation with fission source iteration, where the partial current-based coarse-mesh finite difference (p-CMFD) method is used both to accelerate the convergence of the fission source distributions and to diagnose whether the fission source iteration diverges because of too large a macro-time-step size used for a positive reactivity insertion. To improve the convergence of the fission source iteration, exponential transformation is also applied. In addition, the variances of MC tallies can be reduced by increasing the number of active fission source iterations. For method and code verification, the PCQS method for the MC calculation with fission source iteration is compared with the implicit Euler method for a method-of-characteristics calculation on a two-dimensional TWIGL problem. For both multigroup energy and continuous-energy three-dimensional test problems, the proposed method efficiently reduces computing time with a large macro-time-step size, while the accuracy of the solutions is maintained, compared with those calculated with smaller macro-time-step sizes.