ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
YuGwon Jo, Bumhee Cho, Nam Zin Cho
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 229-246
Technical Paper | doi.org/10.13182/NSE15-100
Articles are hosted by Taylor and Francis Online.
The continuous-energy Monte Carlo (MC) method is gaining attention not only for nuclear reactor statics but also for transient analysis, as computing power increases with the use of massive parallel computers. This paper presents a practical and accurate MC transient analysis method for heterogeneous, continuous-energy reactor transient problems, based on the predictor-corrector quasi-static (PCQS) method. The transient fixed-source problem of the PCQS method is solved by MC calculation with fission source iteration, where the partial current-based coarse-mesh finite difference (p-CMFD) method is used both to accelerate the convergence of the fission source distributions and to diagnose whether the fission source iteration diverges because of too large a macro-time-step size used for a positive reactivity insertion. To improve the convergence of the fission source iteration, exponential transformation is also applied. In addition, the variances of MC tallies can be reduced by increasing the number of active fission source iterations. For method and code verification, the PCQS method for the MC calculation with fission source iteration is compared with the implicit Euler method for a method-of-characteristics calculation on a two-dimensional TWIGL problem. For both multigroup energy and continuous-energy three-dimensional test problems, the proposed method efficiently reduces computing time with a large macro-time-step size, while the accuracy of the solutions is maintained, compared with those calculated with smaller macro-time-step sizes.