ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2021 ANS Virtual Annual Meeting
June 14–16, 2021
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2021
Jan 2021
Latest Journal Issues
Nuclear Science and Engineering
May 2021
Nuclear Technology
April 2021
Fusion Science and Technology
February 2021
Latest News
Consultant recommends subsidies for Exelon plants
A research and consulting firm hired by Illinois governor J. B. Pritzker’s administration to scrutinize the financial fitness of Exelon’s Byron and Dresden nuclear plants approves of limited state subsidies for the facilities, according to a redacted version of the firm’s report made available yesterday.
M. Dion, G. Marleau
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 261-274
Technical Paper | dx.doi.org/10.13182/NSE15-60
Articles are hosted by Taylor and Francis Online.
The sensitivity coefficients of self-shielded cross sections to isotopic densities are computed for a subgroup resonance self-shielding model. The method we propose is based on the derivatives of the collision probabilities used in the slowing-down equation. In this work, we look at how the sensitivities vary as a function of the position inside a fuel pin or of the position of a fuel pin within an assembly. Moreover, we evaluate the importance of the superhomogenization factors, used to correct self-shielded cross sections for the subgroup method, on the cross-section sensitivities. We also present a comparison with the Monte Carlo code Serpent where the sensitivity coefficients are approximated using a finite difference method.