ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
M. Drosg, G. Haouat, D. M. Drake
Nuclear Science and Engineering | Volume 183 | Number 2 | June 2016 | Pages 298-303
Technical Note | doi.org/10.13182/NSE15-118
Articles are hosted by Taylor and Francis Online.
Monoenergetic neutron production by nuclear reactions among light elements and the production of white neutrons by such reactions are of particular interest for fusion applications. Data reduction of continuous neutron spectra is generally hampered by a lack of adequate background spectra. To find the best background spectrum for the measurement of 3H(t,n) double-differential cross sections, much effort was applied to determining a reliable background spectrum stemming from a tritium gas cell. Since the measurement of the 2H(t,n)4He reaction that was used for the efficiency determination used the same gas cell, the same background spectra could be used, and continuous neutron spectra stemming from the three-body (n+X+Y) reactions of 2H(t,n)X+Y could be extracted reliably. Thus, double-differential three-body neutron production cross sections were determined at 5.97, 7.47, 10.45, and 16.41 MeV, at angles between 0 and 90 deg with a scale uncertainty of <4%. Corresponding data with projectile and target particles exchanged are available in the same center-of-mass energy range with uncertainties of ~25%.