ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Dan G. Cacuci, Milica Ilic, Madalina C. Badea, Ruixian Fang
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 22-38
Technical Paper | doi.org/10.13182/NSE15-80
Articles are hosted by Taylor and Francis Online.
This work presents numerical results for the second-order sensitivities of the temperature distributions in a paradigm benchmark problem modeling heat transport in a reactor fuel rod and the surrounding coolant channel. The development of this benchmark problem was originally motivated by the need to verify the numerical results for the first-order sensitivities produced by the FLUENT Adjoint Solver for the G4M Reactor preconceptual design and for a test section designed to investigate thermal-hydraulic phenomena of importance to the safety considerations for this reactor. The relative sensitivities computed using the FLUENT Adjoint Solver had significantly large values, of order unity, thereby motivating the need to investigate the impact of nonlinearities, the bulk of which are quantified by the responses’ second-order sensitivities. However, the current FLUENT Adjoint Solver cannot compute second-order sensitivities, which in turn motivated the derivation of these sensitivities for the heat transport benchmark problem by using the recently developed second-order adjoint sensitivity analysis methodology.
The numerical results obtained in this work used thermal-hydraulic parameters having mean values and standard deviations typical of the conditions found in the preliminary conceptual design of the G4M Reactor. These results show that the contributions of the second-order sensitivities to the expected values of the temperature distributions within the rod, on the rod’s surface, and in the coolant are <1% of the corresponding computed nominal values. Similarly, the contributions of the second-order sensitivities to the standard deviations of the temperature distributions within the rod, on the rod’s surface, and in the coolant are also 1%, or less, of the corresponding contributions stemming from the first-order sensitivities, to the respective total standard deviations (uncertainties). These results justify the use of first-order sensitivities for computing expected uncertainties in the temperature distributions within the benchmark problem and, hence, mutatis mutandis, for the test section and G4M Reactor design.
On the other hand, the most important impact of the second-order sensitivities is the positive skewnesses they induce in the temperature distributions within the rod, on the rod’s surface, and in the coolant. This implies that all three temperature distributions, particularly in the heated rod, are non-Gaussian, asymmetric, and skewed toward temperatures higher than the respective mean temperatures.