ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Joint NEA project performs high-burnup test
An article in the OECD Nuclear Energy Agency’s July news bulletin noted that a first test has been completed for the High Burnup Experiments in Reactivity Initiated Accident (HERA) project. The project aim is to understand the performance of light water reactor fuel at high burnup under reactivity-initiated accidents (RIA).
Akio Yamamoto, Tatsuya Sakamoto, Tomohiro Endo
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 39-51
Technical Paper | doi.org/10.13182/NSE15-102
Articles are hosted by Taylor and Francis Online.
New discontinuity factors (DFs), i.e., individual and common DFs, for the simplified P3 (SP3) theory are proposed. In the individual DFs, two DFs are used for zeroth- and second-order angular moments in order to preserve first- and third-order angular moments of SP3 at a surface of the homogenized region. Contrarily, the same value of DF is used for zeroth- and second-order angular moments, and the first-order angular moment is preserved in the common DF. Theoretical derivation for these DFs are described, and then, actual numerical calculation procedures for these DFs are explained. Verification results in color-set geometries loaded with UO2 and mixed oxide fuel assemblies indicate the validity of the present method for cell-homogenized pin-by-pin SP3 calculations. Homogenization errors on keff and pin-power distribution are significantly reduced by the present DFs. The proposed DFs can be used for practical pin-by-pin core analyses using the SP3 theory.