ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
PR: American Nuclear Society welcomes Senate confirmation of Ted Garrish as the DOE’s nuclear energy secretary
Washington, D.C. — The American Nuclear Society (ANS) applauds the U.S. Senate's confirmation of Theodore “Ted” Garrish as Assistant Secretary for Nuclear Energy at the U.S. Department of Energy (DOE).
“On behalf of over 11,000 professionals in the fields of nuclear science and technology, the American Nuclear Society congratulates Mr. Garrish on being confirmed by the Senate to once again lead the DOE Office of Nuclear Energy,” said ANS President H.M. "Hash" Hashemian.
Akio Yamamoto, Tatsuya Sakamoto, Tomohiro Endo
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 39-51
Technical Paper | doi.org/10.13182/NSE15-102
Articles are hosted by Taylor and Francis Online.
New discontinuity factors (DFs), i.e., individual and common DFs, for the simplified P3 (SP3) theory are proposed. In the individual DFs, two DFs are used for zeroth- and second-order angular moments in order to preserve first- and third-order angular moments of SP3 at a surface of the homogenized region. Contrarily, the same value of DF is used for zeroth- and second-order angular moments, and the first-order angular moment is preserved in the common DF. Theoretical derivation for these DFs are described, and then, actual numerical calculation procedures for these DFs are explained. Verification results in color-set geometries loaded with UO2 and mixed oxide fuel assemblies indicate the validity of the present method for cell-homogenized pin-by-pin SP3 calculations. Homogenization errors on keff and pin-power distribution are significantly reduced by the present DFs. The proposed DFs can be used for practical pin-by-pin core analyses using the SP3 theory.