ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Akio Yamamoto, Tatsuya Sakamoto, Tomohiro Endo
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 39-51
Technical Paper | doi.org/10.13182/NSE15-102
Articles are hosted by Taylor and Francis Online.
New discontinuity factors (DFs), i.e., individual and common DFs, for the simplified P3 (SP3) theory are proposed. In the individual DFs, two DFs are used for zeroth- and second-order angular moments in order to preserve first- and third-order angular moments of SP3 at a surface of the homogenized region. Contrarily, the same value of DF is used for zeroth- and second-order angular moments, and the first-order angular moment is preserved in the common DF. Theoretical derivation for these DFs are described, and then, actual numerical calculation procedures for these DFs are explained. Verification results in color-set geometries loaded with UO2 and mixed oxide fuel assemblies indicate the validity of the present method for cell-homogenized pin-by-pin SP3 calculations. Homogenization errors on keff and pin-power distribution are significantly reduced by the present DFs. The proposed DFs can be used for practical pin-by-pin core analyses using the SP3 theory.