ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Aarno Isotalo, Maria Pusa
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 65-77
Technical Paper | doi.org/10.13182/NSE15-67
Articles are hosted by Taylor and Francis Online.
The Chebyshev rational approximation method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant substeps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the lower-upper decompositions for the linear solutions required in CRAM need to be formed only on the first substep. The improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. With substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit.