ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Aarno Isotalo, Maria Pusa
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 65-77
Technical Paper | doi.org/10.13182/NSE15-67
Articles are hosted by Taylor and Francis Online.
The Chebyshev rational approximation method (CRAM) for solving the decay and depletion of nuclides is shown to have a remarkable decrease in error when advancing the system with the same time step and microscopic reaction rates as the previous step. This property is exploited here to achieve high accuracy in any end-of-step solution by dividing a step into equidistant substeps. The computational cost of identical substeps can be reduced significantly below that of an equal number of regular steps, as the lower-upper decompositions for the linear solutions required in CRAM need to be formed only on the first substep. The improved accuracy provided by substeps is most relevant in decay calculations, where there have previously been concerns about the accuracy and generality of CRAM. With substeps, CRAM can solve any decay or depletion problem with constant microscopic reaction rates to an extremely high accuracy for all nuclides with concentrations above an arbitrary limit.