ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
Peters
Latta
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
M. Drosg
Nuclear Science and Engineering | Volume 183 | Number 1 | May 2016 | Pages 143-148
Technical Note | doi.org/10.13182/NSE15-65
Articles are hosted by Taylor and Francis Online.
The continuous neutron spectrum from the t→d+n breakup reaction can best be extracted in the 3H(p,n)3He and 4He(t,n)6Li reactions because of minimum neutron background in both cases. Only for the latter reaction are neutron background spectra also available. These data were measured at 11.88-MeV triton energy at eight angles between 0 and 120 deg. As a test for the validity of the procedure, angle-dependent differential cross sections of 4He(t,n)6Li were extracted and converted to 6Li(n,t)4He at En = 2.32 MeV by detailed balance calculation thus contributing to the R-matrix analysis of the 7Li system. The double-differential and neutron energy integrated cross sections at that energy are given as well as those for the triton breakup of the time-reversed reaction.