ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Blades-in turbine inspections at Quad Cities set new benchmark for Constellation
When Constellation decided to install replacement Alstom low-pressure turbines at three of its boiling water reactor plants more than 15 years ago, one benefit was knowing the new turbines should operate reliably—and without major inspections—for several years.
U. B. Phathanapirom, E. A. Schneider
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 502-522
Technical Paper | doi.org/10.13182/NSE15-25
Articles are hosted by Taylor and Francis Online.
This paper introduces a new methodology for explicitly incorporating uncertainties in key parameters into decision making regarding the transition between various nuclear fuel cycles. These key uncertainties—in demand growth rates, technology availability, and technology costs, among others—are unlikely to be resolved for several decades and invalidate the concept of planning for a unique optimal transition strategy. Past time-dependent analyses of the nuclear fuel cycle have confronted uncertainties by using a scenario-based approach where key variables are parametrically varied, which gives rise to inflexible courses of action associated with optima for each scenario. Instead, this work selects hedging strategies through a decision making under uncertainty framework. These strategies are found by applying a choice criterion to select courses of action that mitigate regrets. These regrets are calculated by evaluating the performance of all possible transition strategies for every feasible outcome of the uncertain parameter(s). The methodology is applied to a case study involving transition from the current once-through light water reactor fuel cycle to one relying on continuous recycle in fast reactors, and the effect of choice criterion is explored. Hedging strategies are found that preserve significant flexibility to allow alteration of the fuel cycle strategy once these uncertainties are resolved. This work may provide guidance for agent-based, behavioral modeling in fuel cycle simulators as well as decision making in real-world applications.