ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Fusion energy: Progress, partnerships, and the path to deployment
Over the past decade, fusion energy has moved decisively from scientific aspiration toward a credible pathway to a new energy technology. Thanks to long-term federal support, we have significantly advanced our fundamental understanding of plasma physics—the behavior of the superheated gases at the heart of fusion devices. This knowledge will enable the creation and control of fusion fuel under conditions required for future power plants. Our progress is exemplified by breakthroughs at the National Ignition Facility and the Joint European Torus.
Jack Galloway, Cetin Unal
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 523-537
Technical Paper | doi.org/10.13182/NSE15-7
Articles are hosted by Taylor and Francis Online.
While Zircaloy-based claddings have been the workhorse for the nuclear power industry for decades, they have also demonstrated problems, particularly regarding accident scenarios. Work has been performed to assess the viability of stainless steel–based cladding in traditional light water reactors. This paper assesses the reactivity penalty of moving to stainless steel cladding using Monteburns, while attempting to minimize this penalty by increasing the fuel pellet radius and decreasing the cladding thickness. Fuel performance simulations using BISON have also been performed to quantify gains or losses in structural integrity when moving to thinner, stainless steel claddings. Thermal and irradiation creep, along with fission gas swelling, thermal swelling, and fuel relocation, are accounted for in the models for both Zircaloy and stainless steel claddings. Additional models for the lower-oxidation stainless steel APMT are also invoked where available, with irradiation data for HT9 used as a fallback in the absence of appropriate models. In this study the isotopic vectors within each natural element are varied to assess potential reactivity gains if advanced enrichment capabilities were levied toward cladding technologies. Recommendations on cladding thicknesses for a robust cladding as well as the constitutive components of a less penalizing composition are provided.