ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
Peters
Latta
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
Dan G. Cacuci, Ruixian Fang, Milica Ilic, Madalina C. Badea
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 452-480
Technical Paper | doi.org/10.13182/NSE15-69
Articles are hosted by Taylor and Francis Online.
This work presents a heat transport benchmark problem when modeling the steady-state radial conduction in a fuel rod coupled to the axial heat convection in a coolant surrounding the rod and flowing along it. This benchmark problem admits exact analytical solutions for the spatially dependent temperature distributions within the rod and the surrounding coolant. The adjoint sensitivity analysis methodology (ASAM) is applied to compute the analytical expressions of the adjoint state functions for this benchmark problem. In turn, these adjoint state functions are used to compute exactly the first-order sensitivities of the various temperature distributions to the benchmark’s thermal-hydraulics parameters. Locations of particular importance are those where the rod, the rod surface, and the coolant temperatures attain their maxima. The analytical expressions of the benchmark sensitivities thus obtained are subsequently used to compute numerical values of the sensitivities of the various temperature distributions that would arise in the preliminary design of the G4M Reactor to thermal-hydraulics parameters characteristic of this reactor.
The exact benchmark sensitivities are used for verifying the numerical results produced by the FLUENT Adjoint Solver, a code that has been used for computing thermal-hydraulics processes within the G4M Reactor. This solution verification process indicates that the current FLUENT Adjoint Solver cannot compute any sensitivities for the temperature distribution within the solid rod. However, the FLUENT Adjoint Solver is capable of computing the sensitivities of fluid temperatures to boundary parameters (e.g., boundary temperature, boundary velocity, and boundary pressure), but yields accurate results only for the sensitivities of the fluid outlet temperature and the maximum rod surface temperature to the inlet temperature and inlet velocity, respectively. Even for these sensitivities, the FLUENT Adjoint Solver typically needed over 20 000 iterations to converge to the correct solution. In fact, if the exact sensitivity results had not been known a priori, employment of a user-defined iteration-stopping criterion would have likely produced an erroneous result, which would have been noticed by the user only if the user had had the foresight of computing the respective sensitivities independently, via finite-differences using FLUENT recomputations. Several other important sensitivities, including sensitivities to the boundary heat transfer coefficient and sensitivities to material properties (thermal conductivity and specific heat), cannot be obtained from the current FLUENT postprocessing output.
Ideally, the solution verification of the adjoint functions produced by the FLUENT Adjoint Solver would be performed by directly comparing these to the exact expressions of the adjoint functions for the benchmark problem. Such a direct comparison and, hence, a direct solution verification of the FLUENT Adjoint Solver, is currently not possible, because the current FLUENT Adjoint Solver does not provide access to the adjoint functions it computes. Therefore, the results produced by the FLUENT Adjoint Solver can only be verified indirectly, by comparing temperature sensitivities computed using the FLUENT Adjoint Solver to the exact results obtained from the analytical expression of the corresponding benchmark sensitivities. This situation further underscores the need for developing additional thermal-hydraulics benchmark problems that admit exact solutions.