ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
March 2026
Nuclear Technology
February 2026
Fusion Science and Technology
January 2026
Latest News
Gov. Pritzker issues EO to boost nuclear energy in Illinois
Illinois Gov. J. B. Pritzker issued a new executive order (EO) on February 18 directing both the Illinois Power Agency and the Illinois Commerce Commission to issue a notice of intent (NOI) to potential developers of new nuclear power plants.
The signing of that EO took place on the same day Pritzker delivered his 2026 State of the State address, in which he set a goal of building at least 2 gigawatts of new nuclear capacity in the state.
Ang Zhu, Yunlin Xu, Thomas Downar
Nuclear Science and Engineering | Volume 182 | Number 4 | April 2016 | Pages 435-451
Technical Paper | doi.org/10.13182/NSE15-39
Articles are hosted by Taylor and Francis Online.
Three-dimensional (3D), full-core transport modeling with pin-resolved detail for reactor dynamic simulation is important for some multiphysics reactor applications. However, it can be computationally intensive due to the difficulty in maintaining accuracy while minimizing the number of time steps. An innovative Predictor-Corrector Quasi-static Method (PCQM) is introduced that is based on a Transient MultiLevel (TML) methodology. Two levels of couplings are used between 3D-transport/3D-CMFD (coarse-mesh finite difference) and 3D-CMFD/EPKE (exact point-kinetics equation). In each level, the original flux equation is solved in the coarse predictor step and then is factorized as an amplitude and a shape function in the corrector step, where the predicted solution is adjusted using multiple fine steps. In the first-level 3D-transport/3D-CMFD coupling, the angular and subpin flux shape functions in the Boltzmann transport equation are assumed to vary slowly over time, and the CMFD cellwise amplitude function is solved using multiple steps by the 3D-CMFD transient equation. In the second level, the CMFD scalar flux calculated in the last step is further corrected by a whole-core-wise amplitude function generated by the EPKE solver. The utilization of hierarchical multilevel neutronics transient solvers achieves the goal to balance the numerical accuracy and computational efficiency. In addition, a new iteration scheme with pin-resolve thermal-hydraulic feedback and theoretical proof for the accuracy of PCQM are also presented. Finally, a stripe assembly case adopted from the SPERT (Special Power Excursion Reactor Test) transient tests is used to demonstrate the accuracy and efficiency of the TML method.