ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
December 2024
Fusion Science and Technology
November 2024
Latest News
Matthew Marzano confirmed as newest NRC commissioner
A nuclear engineer, former reactor operator, and nuclear navy educator earned U.S. Senate approval today to take a seat on the Nuclear Regulatory Commission.
Matthew Marzano was confirmed in a 50–45 vote in the Senate and steps into an existing five-year term that will expire June 30, 2028. He joins the five-member commission, which has been without a tiebreaker vote since June 2023, when Jeff Baran’s term expired.
Marzano brings more than a decade of industry experience both working in nuclear plants and advising energy policy on Capitol Hill.
Christopher M. Perfetti, Bradley T. Rearden
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 354-368
Technical Paper | doi.org/10.13182/NSE15-13
Articles are hosted by Taylor and Francis Online.
The sensitivity and uncertainty analysis tools of the Oak Ridge National Laboratory SCALE nuclear modeling and simulation code system that have been developed over the last decade have proven indispensable for numerous application and design studies for nuclear criticality safety and reactor physics. SCALE contains tools for analyzing the uncertainty in the eigenvalue of critical systems with realistic three-dimensional Monte Carlo simulations but currently can only quantify the uncertainty in important neutronic parameters such as multigroup cross sections, fuel fission rates, activation rates, and neutron fluence rates with one- or two-dimensional models. A more complete understanding of the sources of uncertainty in these design-limiting parameters using high-fidelity models could lead to improvements in process optimization and reactor safety and help inform regulators when setting operational safety margins. A novel approach for calculating eigenvalue sensitivity coefficients, known as the CLUTCH (Contributon-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance CHaracterization) method, was recently explored as academic research and has been found to accurately and rapidly calculate sensitivity coefficients in criticality safety applications. The work presented here describes an extension of the CLUTCH method, known as the GEneralized Adjoint Responses in Monte Carlo (GEARMC) method, that enables the calculation of sensitivity coefficients and uncertainty analysis for a generalized set of neutronic responses using high-fidelity continuous-energy Monte Carlo calculations. Several criticality safety systems were examined to demonstrate proof of principle for the GEAR-MC method, and GEAR-MC produced response sensitivity coefficients that agreed well with reference direct perturbation sensitivity coefficients.