ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
World Bank, IAEA partner to fund nuclear energy
The World Bank and the International Atomic Energy Agency signed an agreement last week to cooperate on the construction and financing of advanced nuclear projects in developing countries, marking the first partnership since the bank ended its ban on funding for nuclear energy projects.
Sai K. Mylavarapu, Xiaodong Sun, Richard N. Christensen
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 319-331
Technical Paper | doi.org/10.13182/NSE14-107
Articles are hosted by Taylor and Francis Online.
Hydrodynamically developing and fully developed laminar flows in a semicircular duct are numerically and analytically investigated, respectively. As part of the analytical approach, scale analysis is used to develop order-of-magnitude estimates for the friction factor–Reynolds number product for developing and fully developed laminar flows in a semicircular duct. Dimensionless axial velocity distribution is determined and presented in terms of the dimensionless pressure drop constant for hydrodynamically fully developed laminar flow. Fully developed laminar frictional characteristics for flow through a semicircular duct are then deduced from the dimensionless axial velocity distribution, from which the location of maximum axial velocity and the ratio of maximum axial velocity to the mean axial velocity are determined. In addition, hydrodynamically developing laminar flow in a semicircular duct is numerically analyzed. Various developing flow region parameters, such as the apparent Fanning friction factor and incremental pressure drop number, for laminar flows in a semicircular duct are determined from the numerical analysis. Furthermore, the fully developed laminar flow results obtained from the numerical analysis are compared with the analytical solution, and good agreement is observed between them.