ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Dingkang Zhang, Farzad Rahnema
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 369-376
Technical Paper | doi.org/10.13182/NSE15-15
Articles are hosted by Taylor and Francis Online.
The coupled stochastic deterministic COarse MEsh radiation Transport (COMET) method requires a library of incident flux response expansion coefficients for its whole-core calculations. These coefficients are calculated using a stochastic method because of its high accuracy and robustness in modeling geometric complexity. However, the stochastic uncertainty inherent in response coefficients is unavoidably propagated into the whole-core calculations, and consequently, its effects must be quantitatively evaluated. The current method in COMET based on the error propagation significantly overpredicts uncertainty since the correlations among response coefficients are ignored. In this paper, a new adjoint-based method is developed to take into account the uncertainty and correlations of response coefficients. In this approach, forward calculations are first performed to obtain whole-core solutions such as the core eigenvalue and forward partial currents crossing mesh surfaces. Low-order adjoint calculations are then performed to determine the sensitivity of response coefficients. The core eigenvalue uncertainty is finally computed by taking into account the variances of surface-to-surface response coefficients, response fission production, and absorption rates as well as their correlations. The eigenvalue uncertainty predicated by the new method agrees very well with the reference solution, with a discrepancy <3 pcm, while the original error propagation method significantly overestimates the uncertainty. It is also found that the new method’s computational efficiency is comparable to that of the current error propagation method in COMET since the computation time spent on the adjoint calculations is negligible. As an additional benefit, since the covariances among response coefficients are absorbed into the variance of the response net gain rates and the variance of the effective leakage terms, no extra computer memory is needed to store these covariances.