ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Maria Pusa
Nuclear Science and Engineering | Volume 182 | Number 3 | March 2016 | Pages 297-318
Technical Paper | doi.org/10.13182/NSE15-26
Articles are hosted by Taylor and Francis Online.
The burnup equations can, in principle, be solved by computing the exponential of the burnup matrix. However, the problem is extremely stiff, and the matrix exponential solution was long considered infeasible for entire burnup systems containing short-lived nuclides. After discovering that the eigenvalues of burnup matrices are confined to the vicinity of the negative real axis, the Chebyshev rational approximation method (CRAM) was introduced for solving the burnup equations and it was shown to be capable of providing accurate and efficient solutions without the need to exclude the short-lived nuclides. The main difficulty in using CRAM is determining the coefficients of the rational approximant for a given approximation order, with the previously published coefficients enabling only approximations up to order 16 for computing the matrix exponential. In this paper, a Remez-type method is presented for the computation of higher-order CRAM approximations. The optimal form of CRAM for the solution of burnup equations is discussed, and the method of incomplete partial fractions is proposed for this purpose. The CRAM coefficients based on this factorization are provided for approximation orders 4, 8, 12, . . ., 48. The accuracy of the method is demonstrated by applying it to large burnup and decay systems. It is shown that higher-order CRAM can be used to solve the burnup equations accurately for time steps of the order of 1 million years.