ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
World Bank to fund SMRs and nuclear life extensions
The World Bank has reversed its long-time policy on nuclear power plants, deciding at its June 10 board meeting that it would begin funding new nuclear energy projects around the world. The multinational lending organization also decided that it would consider funding for life extensions of existing nuclear reactors. These policy changes were explained by World Bank President Ajay Banga in an email to organization employees.
Rodolfo M. Ferrer, Joel D. Rhodes III
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 151-165
Technical Paper | doi.org/10.13182/NSE15-6
Articles are hosted by Taylor and Francis Online.
A linear source (LS) approximation scheme is presented for the two-dimensional method of characteristics (MOC). The LS approximation relies on the computation of track-based spatial moments over source regions to obtain the LS expansion coefficients. The proposed LS scheme improves the solution accuracy relative to the constant or flat source (FS) approximation. The LS scheme is capable of treating arbitrarily shaped source regions under isotopic or anisotropic scattering assumptions. The LS scheme is also compatible with standard coarse-mesh finite difference acceleration. Numerical tests presented for the C5G7 mixed oxide benchmark show that for comparable accuracy with respect to the reference solution, the LS approximation can reduce the run time by a factor of 4 and the memory requirements by a factor of 10 relative to the FS scheme. This is because the LS scheme permits the use of a much coarser grid than the FS scheme. Numerical tests presented for simple cold critical core configurations with anisotropic scattering confirm the advantage of using the LS scheme.