ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Rodolfo M. Ferrer, Joel D. Rhodes III
Nuclear Science and Engineering | Volume 182 | Number 2 | February 2016 | Pages 151-165
Technical Paper | doi.org/10.13182/NSE15-6
Articles are hosted by Taylor and Francis Online.
A linear source (LS) approximation scheme is presented for the two-dimensional method of characteristics (MOC). The LS approximation relies on the computation of track-based spatial moments over source regions to obtain the LS expansion coefficients. The proposed LS scheme improves the solution accuracy relative to the constant or flat source (FS) approximation. The LS scheme is capable of treating arbitrarily shaped source regions under isotopic or anisotropic scattering assumptions. The LS scheme is also compatible with standard coarse-mesh finite difference acceleration. Numerical tests presented for the C5G7 mixed oxide benchmark show that for comparable accuracy with respect to the reference solution, the LS approximation can reduce the run time by a factor of 4 and the memory requirements by a factor of 10 relative to the FS scheme. This is because the LS scheme permits the use of a much coarser grid than the FS scheme. Numerical tests presented for simple cold critical core configurations with anisotropic scattering confirm the advantage of using the LS scheme.