ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
A. Petruzzi, F. D'Auria
Nuclear Science and Engineering | Volume 182 | Number 1 | January 2016 | Pages 13-53
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NSE15-79
Articles are hosted by Taylor and Francis Online.
This paper discusses the role and the depth of the analysis required for merging, on one hand, suitable experimental data and, on the other hand, qualified code calculation results. The availability of an experimental and calculated qualified database is of utmost importance for the validation and qualification of codes. Such a database can be used not only for demonstrating that the code results are reliable and for performing an independent code assessment but also as a basis for developing and validating an uncertainty methodology. As discussed in several other papers and guidelines, an uncertainty methodology must rely on the availability of a qualified code and qualified procedures. The development of a Standardized Consolidated Calculated and Reference Experimental Database (SCCRED) that includes documentation such as the reference data set of the facility and of the tests, the qualification report of the code calculations, and the engineering handbook constitutes an approach envisaged also by the International Atomic Energy Agency to set up a qualified experimental and calculated database for verification and validation (V&V) purposes of computational tools and uncertainty methodologies.
In order to frame and to outline the role of a qualified database for performing a best-estimate and uncertainty analysis (UA), a summary of the approaches for performing the uncertainty evaluation is provided distinguishing among the methods based on propagation of input uncertainties, the methods based on code output accuracy propagation, and the predictive modeling methodology. The main issues from the review of the uncertainty methods are the following: (a) the identification of the uncertainty-method-user effect to be considered in addition to the more well-known code-user effect when the BEPU (Best Estimate Plus Uncertainty) approach is selected to perform accident analysis and (b) (partially connected also with the first issue) the need for validation of the uncertainty methods (in the same way as validation of a computer code is a fundamental prerequisite for application of the code).
To address the two issues above, the Code with the capability of Internal Assessment of Uncertainty (CIAU) is discussed in detail. In particular, it shall be noted that the CIAU method (which belongs to the methods based on code output accuracy propagation) needs a qualified set of experimental and code calculation results as input for performing a qualified intrinsically validated UA, which has a more limited uncertainty-method-user effect in comparison to the methods based on propagation of input uncertainties. Following the above consideration, the creation of SCCRED as a standardized consolidated reference experimental and calculated database constitutes a prerequisite for the development and application of the CIAU method, but at the same time such a qualified database can also be used for the V&V process of methods based on propagation of input uncertainties contributing to limit the uncertainty-method-user effect.