ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Bipartisan Nuclear REFUEL Act introduced in the U.S. House
Peters
Latta
To streamline the licensing requirements for nuclear fuel recycling facilities and help increase investment in nuclear energy in the United States, U.S. Reps. Bob Latta (R., Ohio) and Scott Peters (D., Calif.) have introduced the bipartisan Nuclear REFUEL Act in the House of Representatives.
The bill, introduced on December 6, would amend the definition of “production facility” in the Atomic Energy Act, clarifying that a reprocessing facility producing uranium-transuranic mixed fuel would be licensed only under 10 CFR Part 70. According to the lawmakers, this single-step licensing process would significantly streamline the licensing requirements for fuel recycling facilities.
G. L. Mesina, D. L. Aumiller, F. X. Buschman, M. R. Kyle
Nuclear Science and Engineering | Volume 182 | Number 1 | January 2016 | Pages 83-95
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NSE15-3
Articles are hosted by Taylor and Francis Online.
The RELAP5-3D code is typically used to model stationary, land-based, thermal-hydraulic systems and contains specialized physics for the modeling of nuclear power plants. It can also model thermal-hydraulic systems in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model thermal-hydraulic systems on planets, moons, and space stations. Additionally, the field equations were modified to model thermal-hydraulic systems in a noninertial frame, such as occur onboard moving craft or during earthquakes for land-based systems.
Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation because limited experimental data exist.
Equations for three-dimensional fluid motion in a noninertial frame of reference are developed. Two different systems for describing rotational motion are presented, user input is discussed, and examples of a modeled simple thermal-hydraulic system undergoing both rotational and translational motion are provided.