ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
G. L. Mesina, D. L. Aumiller, F. X. Buschman
Nuclear Science and Engineering | Volume 182 | Number 1 | January 2016 | Pages 1-12
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NSE14-151
Articles are hosted by Taylor and Francis Online.
Large computer programs like RELAP5-3D solve complex systems of governing, closure, and special process equations to model the underlying physics of thermal-hydraulic systems and include specialized physics for the modeling of nuclear power plants. Further, these programs incorporate other mechanisms for selecting optional code physics, input, output, data management, user interaction, and post-processing. Before being released to users, software quality assurance requires verification and validation. RELAP5-3D verification and validation are focused toward nuclear power plant applications. Verification ensures that the program is built right by checking that it meets its design specifications, comparing coding algorithms to equations, comparing calculations against analytical solutions, and the method of manufactured solutions.
Sequential verification performs these comparisons initially, but thereafter only compares code calculations between consecutive code versions to demonstrate that no unintended changes have been introduced. An automated, highly accurate sequential verification method, based on previous work by Aumiller, has been developed for RELAP5-3D. It provides the ability to test that no unintended consequences result from code development. Moreover, it provides the means to test the following code capabilities: repeated time-step advancement, runs continued from a restart file, and performance of coupled analyses using the R5EXEC executive program. Analyses of the adequacy of the checks used in these comparisons are provided.