ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Human Factors, Instrumentation & Controls
Improving task performance, system reliability, system and personnel safety, efficiency, and effectiveness are the division's main objectives. Its major areas of interest include task design, procedures, training, instrument and control layout and placement, stress control, anthropometrics, psychological input, and motivation.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
Liang-Che Dai, Chung-Yu Yang, Yng-Ruey Yuann, Bau-Shei Pei, Chun-Kuan Shih
Nuclear Science and Engineering | Volume 182 | Number 1 | January 2016 | Pages 96-103
Technical Paper | Special Issue on the RELAP5-3D Computer Code | doi.org/10.13182/NSE14-145
Articles are hosted by Taylor and Francis Online.
According to “Standard Review Plan for the Review of Safety Analysis Reports for Nuclear Power Plants” (NUREG-0800) of the U.S. Nuclear Regulatory Commission, the homogeneous and thermal equilibrium critical flow model (HEM model) is acceptable for pressure and temperature analysis of the subcompartment of the containment. However, it was not built into the RELAP5-3D code. In order to provide the blowdown boundary conditions that meet the acceptance criteria for the subcompartment pressure and temperature response analysis, Institute of Nuclear Energy Research implemented and assessed the Moody HEM model of RELAP5-3D. The assessment phase was subsequent to the implementation of the Moody HEM model of RELAP5-3D. Three experiments of Marviken critical flow tests (CFTs) were selected as the assessment cases. They were CFT 15, CFT 22, and CFT 24. The assessment input decks of RELAP5-3D had been modified from the appendixes of the references. Additional comparisons with the results of the RELAP5-3D built-in Ransom-Trapp and Henry-Fauske critical flow models were also included. The comparisons of the calculated blowdown mass flow rate with the test data assessed the newly implemented model, which gave good prediction. Moreover, the comparisons between the results of the critical flow models of RELAP5-3D and the test data provided a measure of the relative conservatism of the critical flow calculations.