ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Jeremy A. Roberts, Matthew S. Everson, Benoit Forget
Nuclear Science and Engineering | Volume 181 | Number 3 | November 2015 | Pages 331-341
Technical Paper | doi.org/10.13182/NSE14-132
Articles are hosted by Taylor and Francis Online.
A study of the convergence behavior of the eigenvalue response matrix method (ERMM) for nuclear reactor eigenvalue problems is presented. The eigenvalue response matrix equations are traditionally solved by a two-level iterative scheme in which an inner eigenproblem yields particle balance across node boundaries and an outer fixed-point iteration updates the global k-eigenvalue. Past work has shown the method converges rapidly, but the properties of its convergence have not been studied in detail. To perform a formal assessment of these properties, the one-dimensional, one-group diffusion approximation is used to derive the asymptotic error constant of the fixed-point iteration. Several problems are solved numerically, and the observed convergence behavior is compared to the analytic model based on buckling and nodal dimensions (in mean free paths). The results confirm the method converges quickly, with no degradation in the convergence rate for small nodes, which is an observation that suggests ERMM can be used for large-scale, parallel computations with no penalty from the decomposition of a domain into smaller nodes. In addition, results from multigroup problems show that convergence depends strongly on the heterogeneity and the energy representation of a model. In particular, the convergence for two-group and heterogeneous, one-group models is substantially slower than for the homogeneous, one-group model.