ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
L. Jutier, C. Riffard, A. Santamarina, E. Guillou, G. Grassi, D. Lecarpentier, F. Lauvaud, A. Coulaud, M. Hampartzounian, M. Tardy, S. Kitsos
Nuclear Science and Engineering | Volume 181 | Number 2 | October 2015 | Pages 105-136
Technical Paper | doi.org/10.13182/NSE14-51
Articles are hosted by Taylor and Francis Online.
Burnup credit for used fuel assemblies, in particular, pressurized water reactor uranium oxide, has been a major focus of research in France for more than 30 years. As a result, a wealth of knowledge and experience has been gained. The first implementation of burnup credit in France used the “50-leastirradiated- cm” method approved by the French safety authority in the early 1980s. However, because of the continuous increase in fuel enrichment, the industry is interested in reducing the conservatisms of this method by taking into consideration more realistic hypotheses, such as the introduction of fission products and a nonuniform axial burnup profile. To address this concern, a working group, bringing together several French nuclear companies and institutions [AREVA, CEA (Commissariat a` l’Energie Atomique et aux Energies Alternatives), EDF (Electricite´ de France), and IRSN (Institut de Radioprotection et de Suˆrete´ Nucle´aire)], was created in 1997. This paper presents the results of the working group’s discussions and studies on all the issues pertaining to the use of burnup credit. In addition, the practical experience of AREVA TN (a division of AREVA dealing with radioactive materials transport and storage throughout the entire nuclear fuel cycle) with transport casks, using input from these results, is described.