ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Sang-Hyuk Jung, Jei-Won Yeon, Sue Young Hong, Yong Kang, Kyuseok Song
Nuclear Science and Engineering | Volume 181 | Number 2 | October 2015 | Pages 191-203
Technical Paper | doi.org/10.13182/NSE14-87
Articles are hosted by Taylor and Francis Online.
The oxidation behavior of iodide ion (I−) was investigated in aqueous solutions under a high dose rate of gamma irradiation in the range of 0 to 10 kGy·h−1. In particular, we investigated the formation of tri-iodide ion (I3−), the pH change of the solution, and the behavior of iodine species after the irradiation. As the gamma dose and the irradiation time increased, both the formation rate and the amount of I3− correspondingly increased. While I3− is not present above pH 10 due to its disproportionation reaction even without gamma irradiation, with irradiation, I3− does not exist above pH 6.4 because the H2O2 acts as a reductant above pH 5.4. At relatively high concentrations of I−, I3− was the major oxidation species of the gamma irradiation. However, as the irradiation progressed, the concentration of I3− decreased gradually, and eventually, I2 was left as the only species.