ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2022 ANS Annual Meeting
June 12–16, 2022
Anaheim, CA|Anaheim Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2022
Jan 2022
Latest Journal Issues
Nuclear Science and Engineering
June 2022
Nuclear Technology
July 2022
Fusion Science and Technology
Latest News
Finding fusion’s place
Fusion energy is attracting significant interest from governments and private capital markets. The deployment of fusion energy on a timeline that will affect climate change and offer another tool for energy security will require support from stakeholders, regulators, and policymakers around the world. Without broad support, fusion may fail to reach its potential as a “game-changing” technology to make a meaningful difference in addressing the twin challenges of climate change and geopolitical energy security.
The process of developing the necessary policy and regulatory support is already underway around the world. Leaders in the United States, the United Kingdom, the European Union, China, and elsewhere are engaging with the key issues and will lead the way in setting the foundation for a global fusion industry.
Matthew J. Marcath, Shaun D. Clarke, Brian M. Wieger, Enrico Padovani, Edward W. Larsen, Sara A. Pozzi
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 72-81
Technical Paper | dx.doi.org/10.13182/NSE14-89
Articles are hosted by Taylor and Francis Online.
Monte Carlo particle transport codes used to model detector responses are traditionally run in analog mode. However, analog simulations of cross-correlation measurements are extremely time-consuming because the probability of coincident detection is small, approximately equal to the product of the probabilities of a single detection in each detector. The new implicit correlation method described here increases the number of correlated event scores, thereby reducing variance and required computation times. The cost of the implicit correlation method is comparable to the cost of simulating single-event detection for the lowest absolute detector efficiency in the problem. The new method is especially useful in the nuclear nonproliferation and safeguards fields for simulating correlation measurements of shielded special nuclear material.
The new method was implemented in MCNPX-PoliMi for neutron-neutron cross-correlations with a 252Cf spontaneous fission source measured by 14 detectors at various angles. The method demonstrated good agreement with analog simulation and reference measurement results. Small differences between nonanalog and analog cross-correlation distributions are attributed to discretization errors that are often not present in practical applications. Improvement in the figure of merit was greater than a factor of 100 in all tested cases.