ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
Mike Kramer: Navigating power deals in the new data economy
Mike Kramer has a background in finance, not engineering, but a combined 20 years at Exelon and Constellation and a key role in the deals that have Meta and Microsoft buying power from Constellation’s Clinton and Crane sites have made him something of a nuclear expert.
Kramer spoke with Nuclear News staff writer Susan Gallier in late August, just after a visit to Clinton in central Illinois to celebrate a power purchase agreement (PPA) with Meta that closed in June. As Constellation’s vice president for data economy strategy, Kramer was part of the deal-making—not just the celebration.
Ahmad M. Ibrahim, Paul P. H. Wilson, Mohamed E. Sawan, Scott W. Mosher, Douglas E. Peplow, John C. Wagner, Thomas M. Evans, Robert E. Grove
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 48-59
Technical Paper | doi.org/10.13182/NSE14-94
Articles are hosted by Taylor and Francis Online.
The well-established Consistent Adjoint Driven Importance Sampling (CADIS) and the Forward Weighted Consistent Adjoint Driven Importance Sampling (FW-CADIS) hybrid Monte Carlo/deterministic techniques have dramatically increased the efficiency of neutronics simulations, yielding accurate solutions for increasingly complex problems through full-scale, high-fidelity simulations. However, for full-scale simulations of very large and geometrically complex nuclear energy systems, even the CADIS and FW-CADIS techniques can reach the CPU and memory limits of all but the very powerful supercomputers. In this work, three mesh adaptivity algorithms were developed to reduce the computational resource requirements of CADIS and FW-CADIS without sacrificing their efficiency improvements. First, a macromaterial approach was developed to enhance the fidelity of the deterministic models without changing the mesh. Second, a deterministic mesh refinement algorithm was developed to generate meshes that capture as much geometric detail as possible without exceeding a specified maximum number of mesh elements. Finally, a weight window (WW) coarsening (WWC) algorithm was developed to decouple the WW mesh and energy bins from the mesh and energy group structure of the deterministic calculations. By removing the memory constraint of the WW map from the resolution of the mesh and the energy group structure of the deterministic calculations, the WWC algorithm allows higher-fidelity deterministic calculations that, consequently, increase the efficiency and reliability of the CADIS and the FW-CADIS simulations. The three algorithms were used to enhance an FW-CADIS calculation of the prompt dose rate throughout the ITER experimental facility. Using these algorithms increased both the number of mesh tally elements in which nonzero results were obtained (+23.3%) and the overall efficiency of the calculation (a factor of >3.4). The three algorithms enabled this difficult calculation to be accurately solved using an FW-CADIS simulation on a 94-CPU computer cluster, eliminating the need for a world-class supercomputer.