ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
Brian C. Kiedrowski, Forrest B. Brown, Jeremy L. Conlin, Jeffrey A. Favorite, Albert C. Kahler, Alyssa R. Kersting, D. Kent Parsons, Jessie L. Walker
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 17-47
Technical Paper | doi.org/10.13182/NSE14-99
Articles are hosted by Taylor and Francis Online.
Nuclear criticality safety analysis using computational methods such as a Monte Carlo method must establish, for a defined area of applicability, an upper subcritical limit (USL), which is a calculated multiplication factor k that can be treated as actually subcritical and is derived from a calculational margin (combination of bias and bias uncertainty) and a margin of subcriticality. Whisper, a nonparametric, extreme-value method based on sensitivity/uncertainty techniques and the associated software are presented. Whisper uses benchmark critical experiments, nuclear data sensitivities from the continuous-energy Monte Carlo transport software MCNP, and nuclear covariance data to set a baseline USL. Comparisons with a traditional parametric approach for validation, which requires benchmark data to be normally distributed, show that Whisper typically obtains similar or more conservative calculational margins; comparisons with a rank-order nonparametric approach show that Whisper obtains less stringent calculational margins.