ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Brian C. Kiedrowski, Forrest B. Brown, Jeremy L. Conlin, Jeffrey A. Favorite, Albert C. Kahler, Alyssa R. Kersting, D. Kent Parsons, Jessie L. Walker
Nuclear Science and Engineering | Volume 181 | Number 1 | September 2015 | Pages 17-47
Technical Paper | doi.org/10.13182/NSE14-99
Articles are hosted by Taylor and Francis Online.
Nuclear criticality safety analysis using computational methods such as a Monte Carlo method must establish, for a defined area of applicability, an upper subcritical limit (USL), which is a calculated multiplication factor k that can be treated as actually subcritical and is derived from a calculational margin (combination of bias and bias uncertainty) and a margin of subcriticality. Whisper, a nonparametric, extreme-value method based on sensitivity/uncertainty techniques and the associated software are presented. Whisper uses benchmark critical experiments, nuclear data sensitivities from the continuous-energy Monte Carlo transport software MCNP, and nuclear covariance data to set a baseline USL. Comparisons with a traditional parametric approach for validation, which requires benchmark data to be normally distributed, show that Whisper typically obtains similar or more conservative calculational margins; comparisons with a rank-order nonparametric approach show that Whisper obtains less stringent calculational margins.