ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Feb 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
January 2026
Fusion Science and Technology
Latest News
Uranium prices reach highest level since February 2024
The end-of-January spot price for uranium was $94.28 per pound, according to uranium fuel provider Cameco. That was the highest spot price posted by the company since the $95.00 per pound it listed at the end of February 2024. Spot prices during 2025 ranged from a low of $64.23 per pound at the end of March to a high of $82.63 per pound at the end of September.
Zoltán Perkó, Danny Lathouwers, Jan Leen Kloosterman, Tim H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 345-377
Technical Note | doi.org/10.13182/NSE14-17
Articles are hosted by Taylor and Francis Online.
The nuclear community relies heavily on computer codes both in research and in the operation of installations. The results of such computations are useful only if they are augmented with sensitivity and uncertainty studies. This technical note presents some theoretical considerations regarding traditional first-order sensitivity analysis and uncertainty quantification involving constrained quantities. The focus is on linear constraints, which are often encountered in reactor physics problems due to energy and angle distributions, or the correlation between the isotopic abundances of elements.
A consistent theory is given for the derivation and interpretation of constrained first-order sensitivity coefficients; covariance matrix normalization procedures; their interrelation; and the treatment of constrained inputs with polynomial chaos expansion, which was the main motivation of this research. It is shown that if the covariance matrix violates the “generic zero column and row sum” condition, normalizing it is equivalent to constraining the sensitivities, but since both can be done in many ways, different sensitivity coefficients and uncertainties can be derived. This makes results ambiguous, underlining the need for proper covariance data. Furthermore, it is highlighted that certain constraining procedures can result in biased or unphysical uncertainty estimates. To confirm our conclusions, we demonstrate the presented theory on three analytical and two numerical examples including fission spectrum, isotopic distribution, and power distribution-related uncertainties, as well as the correlation between mass, volume, and density.