ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
Zoltán Perkó, Danny Lathouwers, Jan Leen Kloosterman, Tim H. J. J. van der Hagen
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 345-377
Technical Note | doi.org/10.13182/NSE14-17
Articles are hosted by Taylor and Francis Online.
The nuclear community relies heavily on computer codes both in research and in the operation of installations. The results of such computations are useful only if they are augmented with sensitivity and uncertainty studies. This technical note presents some theoretical considerations regarding traditional first-order sensitivity analysis and uncertainty quantification involving constrained quantities. The focus is on linear constraints, which are often encountered in reactor physics problems due to energy and angle distributions, or the correlation between the isotopic abundances of elements.
A consistent theory is given for the derivation and interpretation of constrained first-order sensitivity coefficients; covariance matrix normalization procedures; their interrelation; and the treatment of constrained inputs with polynomial chaos expansion, which was the main motivation of this research. It is shown that if the covariance matrix violates the “generic zero column and row sum” condition, normalizing it is equivalent to constraining the sensitivities, but since both can be done in many ways, different sensitivity coefficients and uncertainties can be derived. This makes results ambiguous, underlining the need for proper covariance data. Furthermore, it is highlighted that certain constraining procedures can result in biased or unphysical uncertainty estimates. To confirm our conclusions, we demonstrate the presented theory on three analytical and two numerical examples including fission spectrum, isotopic distribution, and power distribution-related uncertainties, as well as the correlation between mass, volume, and density.