ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
Robert E. Henry, Michael Epstein, Hans K. Fauske
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 312-334
Technical Paper | doi.org/10.13182/NSE14-90
Articles are hosted by Taylor and Francis Online.
The mechanisms controlling an aluminum-water steam explosion and the possibility that a significant chemical reaction could be initiated have been debated for decades. This paper investigates the influence of hydrogen gas that is generated by the steam oxidation reaction. Most of this gas diffuses to the surface, but some diffuses into the molten metal. Analyses show that at elevated aluminum temperatures sufficient hydrogen is formed to saturate the diffusion layer propagating into the liquid metal, even considering that the hydrogen solubility increases significantly with temperature. If a steam explosion is initiated, the local rapid surface cooling would cause the dissolved hydrogen to become highly supersaturated, such that it would nucleate into high pressure gas bubbles within the locally cooled outer surface of the molten aluminum globules. This high pressure source would strip a thin molten layer, which has the thickness of the cooled thermal boundary, off of the surface as fine fragments that can oxidize explosively in the surrounding environment. Based on this mechanism, a methodology has been developed and found to be in agreement with the available large-scale data regarding (a) the conditions required for the occurrence of a significant chemical component in the explosion and (b) the energy releases that occur when a steam explosion initiates a chemical explosion.