ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Robert E. Henry, Michael Epstein, Hans K. Fauske
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 312-334
Technical Paper | doi.org/10.13182/NSE14-90
Articles are hosted by Taylor and Francis Online.
The mechanisms controlling an aluminum-water steam explosion and the possibility that a significant chemical reaction could be initiated have been debated for decades. This paper investigates the influence of hydrogen gas that is generated by the steam oxidation reaction. Most of this gas diffuses to the surface, but some diffuses into the molten metal. Analyses show that at elevated aluminum temperatures sufficient hydrogen is formed to saturate the diffusion layer propagating into the liquid metal, even considering that the hydrogen solubility increases significantly with temperature. If a steam explosion is initiated, the local rapid surface cooling would cause the dissolved hydrogen to become highly supersaturated, such that it would nucleate into high pressure gas bubbles within the locally cooled outer surface of the molten aluminum globules. This high pressure source would strip a thin molten layer, which has the thickness of the cooled thermal boundary, off of the surface as fine fragments that can oxidize explosively in the surrounding environment. Based on this mechanism, a methodology has been developed and found to be in agreement with the available large-scale data regarding (a) the conditions required for the occurrence of a significant chemical component in the explosion and (b) the energy releases that occur when a steam explosion initiates a chemical explosion.