ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Aug 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
August 2025
Latest News
Startup looks to commercialize inertial fusion energy
Another startup hoping to capitalize on progress the Department of Energy’s Lawrence Livermore National Laboratory has made in realizing inertial fusion energy has been launched. On August 27, San Francisco–based Inertia Enterprises, a private fusion power start-up, announced the formation of the company with the goal of commercializing fusion energy.
B. D. Ganapol
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 224-246
Technical Paper | doi.org/10.13182/NSE14-55
Articles are hosted by Taylor and Francis Online.
In 1960, Ken Case published his seminal work on the singular eigenfunction expansion for the Green’s function of the monoenergetic neutron transport equation with isotropic scattering. Previously, the solution had been found by Fourier transform as pole and branch cut contributions. It was apparent the two solutions were equivalent; however, showing equivalence for general anisotropic scattering was an unresolved challenge—until now. The motivation for revisiting the Green’s function solution is to resolve this issue by constructing a moments solution through analytical recurrence and application of Christoffel-Darboux formulas. While nothing more than Case’s singular eigenfunction expansion will result, the approach is new and follows Case’s original reasoning in applying separation of variables common to partial differential equations to solve the transport equation; that is, an equivalence to the singular eigenfunction expansion by Fourier transforms should indeed exist.