ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
Fusion Science and Technology
November 2025
Latest News
Modernizing I&C for operations and maintenance, one phase at a time
The two reactors at Dominion Energy’s Surry plant are among the oldest in the U.S. nuclear fleet. Yet when the plant celebrated its 50th anniversary in 2023, staff could raise a toast to the future. Surry was one of the first plants to file a subsequent license renewal (SLR) application, and in May 2021, it became official: the plant was licensed to operate for a full 80 years, extending its reactors’ lifespans into 2052 and 2053.
Cory D. Ahrens
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 273-285
Technical Paper | doi.org/10.13182/NSE14-76
Articles are hosted by Taylor and Francis Online.
The classical Sn equations of Carlson and Lee have been a mainstay in multidimensional radiation transport calculations. In this paper, an alternative to the Sn equations, the “Lagrange Discrete Ordinates” (LDO) equations, are derived. These equations are based on an interpolatory framework for functions on the unit sphere in three dimensions. While the LDO equations retain the formal structure of the classical Sn equations, they have a number of important differences. The LDO equations naturally allow the angular flux to be evaluated in directions other than those found in the quadrature set. To calculate the scattering source in the LDO equations, no spherical harmonic moments are needed—only values of the angular flux. Moreover, the LDO scattering source preserves the eigenstructure of the continuous scattering operator. The formal similarity of the LDO equations with the Sn equations should allow easy modification of mature three-dimensional Sn codes such as PARTISN or PENTRAN to solve the LDO equations. Numerical results are shown that demonstrate the spectral convergence (in angle) of the LDO equations for smooth solutions and the ability to mitigate ray effects by increasing the angular resolution of the LDO equations.