ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Cory D. Ahrens
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 273-285
Technical Paper | doi.org/10.13182/NSE14-76
Articles are hosted by Taylor and Francis Online.
The classical Sn equations of Carlson and Lee have been a mainstay in multidimensional radiation transport calculations. In this paper, an alternative to the Sn equations, the “Lagrange Discrete Ordinates” (LDO) equations, are derived. These equations are based on an interpolatory framework for functions on the unit sphere in three dimensions. While the LDO equations retain the formal structure of the classical Sn equations, they have a number of important differences. The LDO equations naturally allow the angular flux to be evaluated in directions other than those found in the quadrature set. To calculate the scattering source in the LDO equations, no spherical harmonic moments are needed—only values of the angular flux. Moreover, the LDO scattering source preserves the eigenstructure of the continuous scattering operator. The formal similarity of the LDO equations with the Sn equations should allow easy modification of mature three-dimensional Sn codes such as PARTISN or PENTRAN to solve the LDO equations. Numerical results are shown that demonstrate the spectral convergence (in angle) of the LDO equations for smooth solutions and the ability to mitigate ray effects by increasing the angular resolution of the LDO equations.