ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
February 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Radium sources yield cancer-fighting Ac-225 in IAEA program
The International Atomic Energy Agency has reported that, to date, 14 countries have made 14 transfers of disused radium to be recycled for use in advanced cancer treatments under the agency’s Global Radium-226 Management Initiative. Through this initiative, which was launched in 2021, legacy radium-226 from decades-old medical and industrial sources is used to produce actinium-225 radiopharmaceuticals, which have shown effectiveness in the treatment of patients with breast and prostate cancer and certain other cancers.
Mei-Ya Wang, Tsung-Kuang Yeh
Nuclear Science and Engineering | Volume 180 | Number 3 | July 2015 | Pages 335-340
Technical Paper | doi.org/10.13182/NSE14-97
Articles are hosted by Taylor and Francis Online.
For further improvements on thermal efficiency and operation safety, reactor internal pumps, instead of conventional recirculation systems, are adopted in an advanced boiling water reactor (ABWR). With the novel design of internal circulation, the traveling path and pattern of the recirculated liquid coolant in an ABWR is actually different from that of the coolant in a conventional boiling water reactor. To ensure operation safety, optimization of the coolant chemistry in the primary coolant circuit (PCC) of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding of the water chemistry in an ABWR, such as the one being constructed in the northern part of Taiwan, and for safer operation of this ABWR, in this study we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor. A well-developed computer code was used to investigate the effectiveness of hydrogen water chemistry (HWC) on the redox species concentrations and electrochemical corrosion potential (ECP) behavior of components in the PCC of the Lungmen ABWR in Taiwan. Our analyses indicated that the effective oxidant concentrations at the top of the downcomer location would be expected to be >100 ppb at 0.5 ppm [H2]FW at the original rated power. While an effective ECP reduction at 0.4 ppm [H2]FW was observed at the downcomer outlet, a 2.0 ppm [H2]FW was not enough to reduce the ECP below the Ecrit at the upper plenum outlet. In summary, the effectiveness of HWC in the PCC of an ABWR is expected to vary from location to location and eventually from plant to plant due to different degrees of radiolysis and physical dimensions in different ABWRs.