ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
Tuomas Viitanen, Jaakko Leppänen
Nuclear Science and Engineering | Volume 180 | Number 2 | June 2015 | Pages 209-223
Technical Paper | doi.org/10.13182/NSE14-46
Articles are hosted by Taylor and Francis Online.
This paper discusses the generation of temperature majorant cross sections, the type of cross sections required by two separate techniques related to Monte Carlo neutron tracking, namely, the Doppler-broadening rejection correction (DBRC) and target motion sampling (TMS) temperature treatment methods. In the generation of these cross sections, the theoretically infinite range of thermal motion must be artificially limited by applying some sort of a cutoff condition, which affects both the accuracy and the performance of the calculations. In this paper, a revised approach for limiting thermal motion is first introduced, and then, optimal cutoff conditions are determined for both the traditional majorant, commonly used in DBRC implementations and old implementations of the TMS method, and the revised majorant. Using the revised type of temperature majorant cross sections increases the performance of the TMS method slightly, but no practical difference is observed with the DBRC method. It is also discovered that in ordinary reactor physical calculations, the cutoff conditions originally adopted from the SIGMA1 Doppler-broadening code can be significantly relieved without compromising the accuracy of the results. By updating the cutoff conditions for majorant generation, the CPU time requirement of Serpent 2.1.17 is reduced by 8% to 23% in TMS calculations and by 1% to 6% in problems involving DBRC.