ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 8–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Oct 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
DNFSB’s Summers ends board tenure, extending agency’s loss of quorum
Lee
Summers
The Defense Nuclear Facilities Safety Board, the independent agency responsible for ensuring that Department of Energy facilities are protective of public health and safety, announced that the board’s acting chairman, Thomas Summers, has concluded his service with the agency, having completed his second term as a board member on October 18.
Summers’ departure leaves Patricia Lee, who joined the DNFSB after being confirmed by the Senate in July 2024, as the board’s only remaining member and acting chair. Lee’s DNFSB board term ends in October 2027.
Sebastian Schunert, Yousry Azmy
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 1-29
Technical Paper | doi.org/10.13182/NSE14-77
Articles are hosted by Taylor and Francis Online.
A comparison of the accuracy and computational efficiency of spatial discretization methods of the three-dimensional SN equations is conducted, including discontinuous Galerkin finite element methods, the arbitrarily high-order transport method of nodal type (AHOTN), the linear-linear method, the linear-nodal (LN) method, and the higher-order diamond difference method. For this purpose, we have developed a suite of method of manufactured solutions benchmarks that provides an exact solution of the SN equations even in the presence of scattering. Most importantly, our benchmark suite permits the user to set an arbitrary level of smoothness of the exact solution across the singular characteristics. Our study focuses on the computational efficiency of the considered spatial discretization methods.
Numerical results indicate that the best-performing method depends on the norm used to measure the discretization error. We employ discrete Lp norms and integral error norms in this work. For configurations with continuous exact angular flux, high-order AHOTNs perform best under Lp error norms, while the LN method performs best when measured by integral error norms. When the angular flux is discontinuous, a new singular-characteristic tracking method for three-dimensional geometries performs best among the considered methods.