ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE issues new NEPA rule and procedures—and accelerates DOME reactor testing
Meeting a deadline set in President Trump’s May 23 executive order “Reforming Nuclear Reactor Testing at the Department of Energy,” the DOE on June 30 updated information on its National Environmental Policy Act (NEPA) rulemaking and implementation procedures and published on its website an interim final rule that rescinds existing regulations alongside new implementing procedures.
Taro Ueki
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 58-68
Technical Paper | doi.org/10.13182/NSE14-54
Articles are hosted by Taylor and Francis Online.
The overlapping batch means method (OBM) has been investigated for robust statistical error estimation of local power tallies in Monte Carlo (MC) reactor core calculation. Originally, a nonoverlapping version was introduced in MC criticality calculation by Gelbard and Prael. However, the issue of batch size optimization was thought of as a lack of robustness. In this work, OBM with asymptotic bias correction was implemented with the batch size of the square root of the number of generations and compared with the orthonormally weighted standardized time series method (OWSTS). Numerical tests were conducted for various positions of the core of a pressurized water reactor. Results obtained indicate that neither OBM nor OWSTS consistently outperforms the other in terms of an overall performance measure incorporating bias and stability. Therefore, OBM with asymptotic bias correction can be an option to statistical error estimation in production MC criticality codes since OWSTS lacks an automated process to determine the number of weighting functions and can output the estimate only at the final generation. It is also shown that OBM with asymptotic bias correction performs equally regardless of the batch size.