ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Acceleron Fusion raises $24M in seed funding to advance low-temp fusion
Cambridge, Mass.–based fusion startup Acceleron Fusion announced that it has closed a $24 million Series A funding round co-led by Lowercarbon Capital and Collaborative Fund. According to Acceleron, the funding will fuel the company’s efforts to advance its low-temperature muon-catalyzed fusion technology.
J. I. Katz
Nuclear Science and Engineering | Volume 180 | Number 1 | May 2015 | Pages 117-122
Technical Note | doi.org/10.13182/NSE14-81
Articles are hosted by Taylor and Francis Online.
Deuterium-deuterium and deuterium-tritium reaction rates may be compared to determine plasma temperatures in the 10- to 200-eV range. Distinguishing neutrons from these two reactions is difficult when yields are low or unpredictable. Time-of-flight (TOF) methods fail if the source is extended in time. These neutrons may be distinguished because inelastic scattering of more energetic neutrons by carbon produces a 4.44-MeV gamma ray and because hydrogenous material preferentially attenuates lower-energy neutrons. We describe a detector system that can discriminate between lower- and higher-energy neutrons for fluences as low as O(102) neutrons per sterad even when TOF methods fail, define a figure of merit, and calculate its performance over a broad range of parameters.