ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Christmas Light
’Twas the night before Christmas when all through the house
No electrons were flowing through even my mouse.
All devices were plugged by the chimney with care
With the hope that St. Nikola Tesla would share.
D. Neudecker, R. Capote, D. L. Smith, T. Burr, P. Talou
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 381-397
Technical Paper | doi.org/10.13182/NSE14-6
Articles are hosted by Taylor and Francis Online.
Low evaluated uncertainties compared to experimental information and a strong model impact were observed in some prompt fission neutron spectrum (PFNS) evaluations that include mean values and covariances stemming from a rigid model. Here, we show by studying the 239Pu PFNS ENDF/B-VII.1 evaluation via generalized least-squares analyses that strong model correlations in combination with the normalization condition on the estimated PFNS and its covariances result in surprisingly low evaluated uncertainties. Furthermore, the model changes the evaluated results by >1σ of combined experimental uncertainties near the average outgoing neutron energy (~2 MeV). We show both analytically and by means of representative numerical examples that the normalization condition on the spectrum and its covariances naturally leads to uncertainties reduced by a fully positively correlated scaling uncertainty.