ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
B. S. Shivashankar, S. Ganesan, H. Naik, S. V. Suryanarayana, N. Sreekumaran Nair, K. Manjunatha Prasad
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 423-433
Technical Paper | doi.org/10.13182/NSE14-19
Articles are hosted by Taylor and Francis Online.
The 58Ni(n,p)58Co reaction cross sections have been measured relative to two monitors: the cross sections for the formation of the 97Zr fission product in neutron-induced fission of (a) 232Th and of (b) 238U. It is demonstrated how to generate and combine covariance matrices (using partial uncertainties and microcorrelations) in relative measurements at various stages like efficiency calibration of the high-purity germanium detector, using the ratio of 58Ni(n,p)58Co reaction cross section relative to monitor cross section, and in the process of normalization. We further illustrate the weighted averaging of equivalent data as applicable in relative measurements. We provide the necessary data and the corresponding table of partial uncertainties as required for compilation in the EXchange-FORmat (EXFOR) database. This helps, in principle, anyone to generate and verify the steps in the calculation of the covariance matrices in the present work. We believe that it is important for all nuclear experimental scientists to incorporate a detailed data reduction procedure, reduced data, and partial uncertainties in their publications, to the extent possible, which will be very useful in EXFOR compilation.