ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
NRC cuts fees by 50 percent for advanced reactor applicants
The Nuclear Regulatory Commission has announced it has amended regulations for the licensing, inspection, special projects, and annual fees it will charge applicants and licensees for fiscal year 2025.
B. S. Shivashankar, S. Ganesan, H. Naik, S. V. Suryanarayana, N. Sreekumaran Nair, K. Manjunatha Prasad
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 423-433
Technical Paper | doi.org/10.13182/NSE14-19
Articles are hosted by Taylor and Francis Online.
The 58Ni(n,p)58Co reaction cross sections have been measured relative to two monitors: the cross sections for the formation of the 97Zr fission product in neutron-induced fission of (a) 232Th and of (b) 238U. It is demonstrated how to generate and combine covariance matrices (using partial uncertainties and microcorrelations) in relative measurements at various stages like efficiency calibration of the high-purity germanium detector, using the ratio of 58Ni(n,p)58Co reaction cross section relative to monitor cross section, and in the process of normalization. We further illustrate the weighted averaging of equivalent data as applicable in relative measurements. We provide the necessary data and the corresponding table of partial uncertainties as required for compilation in the EXchange-FORmat (EXFOR) database. This helps, in principle, anyone to generate and verify the steps in the calculation of the covariance matrices in the present work. We believe that it is important for all nuclear experimental scientists to incorporate a detailed data reduction procedure, reduced data, and partial uncertainties in their publications, to the extent possible, which will be very useful in EXFOR compilation.