ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
B. S. Shivashankar, S. Ganesan, H. Naik, S. V. Suryanarayana, N. Sreekumaran Nair, K. Manjunatha Prasad
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 423-433
Technical Paper | doi.org/10.13182/NSE14-19
Articles are hosted by Taylor and Francis Online.
The 58Ni(n,p)58Co reaction cross sections have been measured relative to two monitors: the cross sections for the formation of the 97Zr fission product in neutron-induced fission of (a) 232Th and of (b) 238U. It is demonstrated how to generate and combine covariance matrices (using partial uncertainties and microcorrelations) in relative measurements at various stages like efficiency calibration of the high-purity germanium detector, using the ratio of 58Ni(n,p)58Co reaction cross section relative to monitor cross section, and in the process of normalization. We further illustrate the weighted averaging of equivalent data as applicable in relative measurements. We provide the necessary data and the corresponding table of partial uncertainties as required for compilation in the EXchange-FORmat (EXFOR) database. This helps, in principle, anyone to generate and verify the steps in the calculation of the covariance matrices in the present work. We believe that it is important for all nuclear experimental scientists to incorporate a detailed data reduction procedure, reduced data, and partial uncertainties in their publications, to the extent possible, which will be very useful in EXFOR compilation.