ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Drones fly in to inspect waste tanks at Savannah River Site
The Department of Energy’s Office of Environmental Management will soon, for the first time, begin using drones to internally inspect radioactive liquid waste tanks at the department’s Savannah River Site in South Carolina. Inspections were previously done using magnetic wall-crawling robots.
S. Varet, P. Dossantos-Uzarralde, N. Vayatis
Nuclear Science and Engineering | Volume 179 | Number 4 | April 2015 | Pages 398-410
Technical Paper | doi.org/10.13182/NSE14-07
Articles are hosted by Taylor and Francis Online.
For evaluated nuclear cross-section uncertainties, most standard approaches are based on experimental cross-section measurements, reflecting that these measurements have uncertainty on their own and, in particular, undetermined correlations. We propose here focusing on the estimation of experimental covariances and bypassing the direct empirical estimator, which cannot be used due to the small amount of available data. Because of the nonlinearity of experimental cross sections, an alternative method to the classical propagation error formula is presented. This method exploits a regression model of the experimental cross sections to generate pseudomeasurements and thereby allows an empirical estimation of experimental covariances. Moreover, thanks to a bootstrap, a quality measure for the estimation is provided. The empirical matrix estimation is then improved with shrinkage. The validity of the approach is confirmed through numerical experiments on a toy model. Finally, the procedure is applied to the real case of the 5525Mn nucleus.