ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Contractor selected for Belgian LLW/ILW facility
Brussels-based construction group Besix announced that is has been chosen by the Belgian agency for radioactive waste management ONDRAF/NIRAS for construction of the country’s surface disposal facility for low- and intermediate-level short-lived nuclear waste in Dessel.
Jeremy A. Roberts
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 333-341
Technical Note | doi.org/10.13182/NSE14-60
Articles are hosted by Taylor and Francis Online.
A high-order, transient transport method based on the response matrix formalism is developed for application to reactor kinetics problems. The method combines recent advances in both static and transient response matrix methods with an explicit response-based treatment of delayed neutron precursors first proposed in the 1970s. In addition, an orthogonal basis for the time variable based on point kinetics is proposed as an alternative to a strictly polynomial basis. The method is demonstrated on infinite medium problems, the results of which show that the method can be successfully applied to reactor kinetics problems with and without precursors.