ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jun 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
July 2025
Fusion Science and Technology
Latest News
Take steps on SNF and HLW disposal
Matt Bowen
With a new administration and Congress, it is time once again to ponder what will happen—if anything—on U.S. spent nuclear fuel and high-level waste management policy over the next few years. One element of the forthcoming discussion seems clear: The executive and legislative branches are eager to talk about recycling commercial SNF. Whatever the merits of doing so, it does not obviate the need for one or more facilities for disposal of remaining long-lived radionuclides. For that reason, making progress on U.S. disposal capabilities remains urgent, lest the associated radionuclide inventories simply be left for future generations to deal with.
In March, Rick Perry, who was secretary of energy during President Trump’s first administration, observed that during his tenure at the Department of Energy it became clear to him that any plan to move SNF “required some practical consent of the receiving state and local community.”1
Bhawna Pandey, P. M. Prajapati, S. Jakhar, C. V. S. Rao, T. K. Basu, B. K. Nayak, A. Saxena, S. V. Suryanarayana
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 313-320
Technical Paper | doi.org/10.13182/NSE14-26
Articles are hosted by Taylor and Francis Online.
The radionuclide 55Fe (t1/2 = 2.73 years) is one of the radionuclides produced in large quantities inside a fusion reactor. The excitation function of the (n,p) reaction from threshold to 20 MeV and proton emission spectra from the 55Fe target at 14-MeV neutron energy are calculated using optimized input parameters in the nuclear reaction modular codes EMPIRE-3.1 and TALYS-1.4. The codes account for the major nuclear reaction mechanisms, including direct, preequilibrium, and compound nucleus contributions. The present results of 55Fe(n,p)55Mn are compared with the existing evaluated nuclear data libraries ROSFOND-2010, JEFF-3.1, and EAF-2010 along with systematics around 14-MeV neutron energy. The prediction accuracy of the present calculation is considered to satisfy the requirement for fusion reactor applications. The theoretical nuclear model calculations with a reliable parameter set up to 20 MeV are recommended to estimate the cross section of radionuclides or unstable targets in the mass region A ∼ 50 to 60. The present work is an important step to study the cross section of the 55Fe(n,p)55Mn reaction by a surrogate method.