ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Qian Zhang, Hongchun Wu, Liangzhi Cao, Youqi Zheng
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 233-252
Technical Paper | doi.org/10.13182/NSE13-108
Articles are hosted by Taylor and Francis Online.
The deviation of the effective resonance cross section obtained by conventional equivalence theory for a heterogeneous system is analyzed. It is shown that several approximations commonly adopted in conventional equivalence theory account for the deviation at different levels, with the narrow resonance (NR) approximation being the main source of deviation. Based on the analysis, an improved method based on equivalence theory is proposed. It utilizes the resonance fine flux integral table to minimize the deviation caused by NR approximation. The validity of the method is confirmed by test calculations of effective resonance cross sections in different geometries and different energy group structures. The results of eigenvalue calculations on typical fuel pin cells show that the proposed improvement is effective in reducing the error of infinite multiplication factors of the pin cell. Since the resonance fine flux integral used in this method has already been obtained in calculating the resonance integral table and can be pre-tabulated in the process of generating the library, the implementation of the proposed method is simple and requires no additional calculations. It is useful for improving the accuracy of lattice physics codes based on the equivalence theory.