ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
2025 ANS Annual Conference
June 15–18, 2025
Chicago, IL|Chicago Marriott Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
May 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
July 2025
Nuclear Technology
June 2025
Fusion Science and Technology
Latest News
BREAKING NEWS: Trump issues executive orders to overhaul nuclear industry
The Trump administration issued four executive orders today aimed at boosting domestic nuclear deployment ahead of significant growth in projected energy demand in the coming decades.
During a live signing in the Oval Office, President Donald Trump called nuclear “a hot industry,” adding, “It’s a brilliant industry. [But] you’ve got to do it right. It’s become very safe and environmental.”
Qian Zhang, Hongchun Wu, Liangzhi Cao, Youqi Zheng
Nuclear Science and Engineering | Volume 179 | Number 3 | March 2015 | Pages 233-252
Technical Paper | doi.org/10.13182/NSE13-108
Articles are hosted by Taylor and Francis Online.
The deviation of the effective resonance cross section obtained by conventional equivalence theory for a heterogeneous system is analyzed. It is shown that several approximations commonly adopted in conventional equivalence theory account for the deviation at different levels, with the narrow resonance (NR) approximation being the main source of deviation. Based on the analysis, an improved method based on equivalence theory is proposed. It utilizes the resonance fine flux integral table to minimize the deviation caused by NR approximation. The validity of the method is confirmed by test calculations of effective resonance cross sections in different geometries and different energy group structures. The results of eigenvalue calculations on typical fuel pin cells show that the proposed improvement is effective in reducing the error of infinite multiplication factors of the pin cell. Since the resonance fine flux integral used in this method has already been obtained in calculating the resonance integral table and can be pre-tabulated in the process of generating the library, the implementation of the proposed method is simple and requires no additional calculations. It is useful for improving the accuracy of lattice physics codes based on the equivalence theory.